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A new mechanism of heteroclinic tangency is investigated by using two-dimen- 
sional maps. First, it is numerically shown that the unstable manifold from a 
hyperbolic fixed point accumulates to the stable manifold of a nearby period-2 
hyperbolic point in a piecewise linear map and that the unstable manifold from 
a hyperbolic fixed point accumulates to the accumulation of the stable manifold 
of a nearby period-2 hyperbolic point in a cubic map. Second, a theorem on the 
impossibility of heteroclinic tangency (in the usual sense) is given for a par- 
ticular type of map. The notions of direct and asymptotic heteroclinic tangencies 
are introduced and heteroclinic tangency is classified into four types. 

KEY WORDS: Direct heteroclinic tangency; asymptotic heteroclinic 
tangency; stable and unstable manifolds; hyperbolic fixed point; basin. 

1. I N T R O D U C T I O N  

In recent  years  fascinat ing deve lopments  have been made  in non l inear  
dynamica l  systems. (1) In this paper ,  we s tudy the mechanism of the 
heterocl inic  tangency  in two-d imens iona l  maps.  The  heterocl inic  tangency 
as well as the homocl in ic  tangency  in diss ipat ive dynamica l  systems has 
been inves t iga ted  by m a n y  authors.(2-5) The  heterocl inic  tangency (intersec- 
t ion)  means  tha t  the s table and  uns table  manifo lds  from dis t inct  hyperbol ic  
poin ts  touch (intersect).  However ,  the deta i led  s t ructure  of  the heterocl inic  
tangency  has no t  been clearly unde r s tood  c o m p a r e d  with the mechanism of 
the homocl in ic  tangency.  (6-8) Us ing  the results of  numer ica l  calculat ions,  
we discuss the heterocl inic  tangency  in a two-d imens iona l  piecewise l inear  

Liberal Arts and Sciences, Teikyo University of Technology, Ichihara, Chiba 290-01, Japan. 
2 Division of Theoretical Astrophysics, National Astronomical Observatory, Mitaka, Tokyo 

181, Japan. 

741 

0022-4715/91/0800-0741506.50/0 �9 1991 Plenum Publishing Corporation 



742 Yamaguchi and Tanikawa 

map similar to the Lozi map (9) in Section 2, and study the tangency for a 
two-dimensional cubic map in Section 3. The notions of direct and 
asymptotic heteroclinic tangencies are introduced in Section 4. We state a 
theorem on the existence of heteroclinic tangency and give its proof. The 
theorem implies the existence of asymptotic heteroclinic tangency. We show 
that the heteroclinic tangency is classified into four types. In the last sec- 
tion, the effect of the heteroclinic tangency on the orbit and the structure 
of basins is discussed. 

2. THE HETEROCLINIC T A N G E N C Y  IN A T W O - D I M E N S I O N A L  
PIECEWlSE LINEAR M A P  

When we investigate the heteroclinic tangency between the stable and 
unstable manifolds by numerical calculations, it is very convenient to use 
the maps in which the coexistence of the hyperbolic saddle points is clearly 
visible. Thus we take the piecewise linear map and the two-dimensional 
cubic map instead of the famous H~non map/m~ 

In this section, we study the mechanism of the heteroclinic tangency 
for the piecewise linear map T,(X, Y): 

To: X , + l =  Y, ,  Yn+~=fa(Y , )  - J X .  (1) 

f - a Y + a  for Y~> 1/2 

fa(Y) = ~a Y for - 1/2 ~< Y < 1/2 

[ - a Y - a  for Y~<-1 /2  

where J (0 < J <~ 1) is the Jacobian determinant and a (>  0) is a bifurcation 
parameter. We consider the parameter range a > J +  1. Then, the origin 
(0, 0) is a hyperbolic fixed point without reflection. This map has 
the period-2 hyperbolic points without reflection SI(X*, Y*) and 
S 2 ( - X * ,  - Y * ) ,  where X* and Y* are given by 

Y* = - X *  = a/(a - J -  1 ) (2) 

For the piecewise linear map, it is easy to calculate the exact expres- 
sions of the unstable and stable manifolds in the vicinity of hyperbolic 
points. Using linear stability analysis, we can obtain the expressions of the 
unstable manifold W1. and stable manifold W~ around the origin: 

Y = a X  for W'.(IJf[ ~< 1/2) (3) 

Y =  (J/a) X for W~(I YI ~< t/2) (4) 

where a = [a + (a 2 - 4J)1/2]/2. 
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The expressions of W~ and W~ are given 

Y= -: t (X+ X * ) -  Y* for W. 2 

Y= - ~ ( X - X * ) +  Y* for W. z 

Y= (-J/cO(X+ X * ) -  Y* for W~ 

Y= ( - J /a)(X-  X*) + Y* for W~ 

by 

from $2 (X>>. 1/2) (5) 

from S1 (X~< -1/2)  (6) 

from $2 (Y~< -1/2)  (7) 

from $1 (Y>~ 1/2) (8) 

Using Eqs. (3)-(8) and the map (1), we can formally construct Wl., 
W~, W~, and W~. Here we show the recurrence formula for such functions: 

Fk+~(X)=f(X)--JFk~(X), k>>.O (9) 

where F o is defined by the right-hand side of Eqs. (3)-(8) and F~I(X) is an 
inverse function. Here the index k implies the iteration time. The domain 
of the function Fk+I(X) is confined by the region of the inverse function 
F~I(X). 

We consider the iteration of the segment [1/2c~, 1/2) on WIn. This 
branch is mapped onto the branch expressed by 

F I =  - ( a + J / ~ ) X + a  (0.5 ~< X <  ~/2) (10) 

Using Eq. (9), the succeeding branches are sequentially determined. 
We also obtain the next branches of W. z by using Eq. (9) and 

Eqs. (5)-(6): 

Y= (a + J/cQ X+ J(X* + Y*/c 0 

Y= (a + J/a) X -  J(X* + r*/~) 

connected with Eq. (6) (11) 

connected with Eq. (5) (12) 

It is difficult to find full expressions for all branches of the stable and 
unstable manifolds even if the map is defined by a linear function. So we 
check their structures by numerical calculations. The numerical results are 
shown in Figs. 1 and 2, where the Jacobian is fixed to J =  0.4. In Fig. 1, the 
folded piecewise linear graph shows the unstable manifold WIn from the 
origin. The stable manifold W~ from the period-2 hyperbolic points is the 
boundary between two basins painted in black or in white. In Fig. 2, a 
portion of the unstable manifold W~ from the period-2 hyperbolic points is 
illustrated. From these figures, we find the following results: 

1. The unstable manifold Wlu from the origin is limited by W~ from 
the period-2 hyperbolic points. 
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Fig. 1. Phase plane structure before and after the heteroclinic tangency in the piecewise 
linear map. (a) a = 2.4: before the tangency; (b) a = 2.44924: at tangency; (c) a = 2.48: after 
tangency. J =  0.4 in all cases. The piecewise linear graphs are the unstable manifold Wl. 
starting from the origin. The stable manifold appears as the boundary of the black and white 
areas. The white area shows the basin of the attraction for the chaotic attractor and the black 
area is the basin for the attractor at infinity. In this case, the boundary is a simple curve. The 
period-2 hyperbolic points are indicated by filled circles. 
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2. The outermost branches of W=. accumulate to the stable manifold 
W~ at the situation of heteroclinic tangency, In this case, the heteroclinic 
tangency points are not on the manifolds. 

3. The heteroclinic tangency between W*, and W~ and the homoclinic 
tangency between W~ and W~ occur at the same value of a. 
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Fig. 2. The unstable manifold W2. from the period-2 hyperbolic points in the piecewise linear 
map. (a) a = 2.4 and (b) a =  2.4492. In both cases J=0.4. The piecewise linear graphs are W~. 
See Fig. 1 for other explanations. 
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3. THE HETEROCLINIC T A N G E N C Y  FOR THE 
T W O - D I M E N S I O N A L  CUBIC M A P  

We consider another system with f~(Y)=aY-y3 in Eq. (1). The 
origin is the hyperbolic fixed point without reflection when a > J +  1. 
The period-2 hyperbolic points without reflection S~(X*, Y*) and 
S2(-X*,  - Y*) always exist: 

Y* = - X *  = (a + J +  1) 1/2 (13) 

In refs. 7 and 8, the approximate expressions for W1. s and W 2 around 
the fixed points were given by using the functional equation method. We 
shall investigate the structure of the heteroclinic tangency by numerical 
calculations. For the case with J=0 .4 ,  we have the critical values 
ah=2.6419 for the homoclinic tangency between W1, and W~ and 
ac=2.7143 for the heteroclinic tangency between W1. and W~. The 
homoclinic tangency between W~ and W~ occurs at ah, = 1.8863. In Fig. 3, 
the area in white is the basin for the confined attractors and the area in 
black is the basin for the attractor at infinity. The boundary between the 
white and black areas is the stable manifold from the period-2 hyperbolic 
points. (s) Note that the stable manifold (basin boundary) accumulates 
toward itself in such cases; hence the basin boundary has the fractal struc- 
ture. From Fig. 3, it is visible that the outermost branches of the unstable 
manifold accumulate to the fractal basin boundary (the stable manifold). 
After the heteroclinic tangency, the unstable manifold W~. suddenly spreads 
beyond W~. From the observation of Fig. 3, we have a conjecture that the 
heteroclinic tangency occurs between the accumulations of W~. and W~. In 
the next section, we study this conjecture in detail. 

4. A THEOREM ON THE HETEROCLINIC T A N G E N C Y  

In Sections 2 and 3, we numerically found examples of maps in which 
the unstable manifold from a hyperbolic fixed point accumulates to the 
stable manifolds from period-2 points or to their accumulations. 

In this section, we will justify our observation theoretically. Let us 
consider a one-parameter family of maps Ta(X, Y): 

Ta: Xn+l = Yn, Y ,+I=f , (Y , ) -JX ,  (1') 

where the Jacobian J is fixed at 0 < J~< 1 and the function fa(Y) satisfies 
the following conditions: 

1. fa(Y) is an odd function and is unimodal at Y>0.  

2. The origin O is a hyperbolic fixed point without reflection. 
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Fig, 3. Phase plane structure before and after the heteroclinic tangency in the cubic map, 
(a) a=2,68: before tangency; (b) a=2.7143: at tangency; (c) a=2,73: after tangency. The 
Jacobian is fixed as J = 0.4, The stable manifolds from the period-2 periodic points appear as 
the boundary of the black and white areas. The white area shows the basin of the attraction 
for the periodic attractor and the black area is the basin for the attractor at infinity. In this 
case, the boundary is the fracta] curve, and then it has the fuzzy structure. 
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3. There is a period-2 hyperbolic point without reflection. Two points 
$1 and $2 belonging to this periodic point are on the line Y= - X  (the 
Y coordinate of $1 is positive). 

4. In the one-dimensional limit with J = 0, the positions of period-2 
hyperbolic points mentioned in condition 3 are the basin boundaries. 

Hereafter the subscript a is omitted. 
Next we introduce some notations. Let W~" and W~u d be two branches 

of unstable manifolds outgoing from O, and W~ ~ be one of the stable 
manifolds ingoing to $1, and W~ r the corresponding branch ingoing to $2. 
Let W~u be one of W~u" and W1, ~ and W~ be one of W~ z' and W~ r. Let [A] 
denote the closure of the set A. If W.  and Ws are tangent to each other at 
some point but never intersect at any point, we say that these manifolds are 
in the first direct heteroclinic tangency. We say that these manifolds are in 
the first asymptotic heteroclinic tangency if W,  and Ws have no common 
point, whereas [ W , ]  and [W~] have common points. 

Then our main result is stated as follows: 

T h e o r e m .  Under the assumptions and notations stated above, the 
first direct heteroclinic tangency between W~ and W, z is impossible to occur 
in maps (1'). 

Remark. Generically, intersections may be transverse (see Fig. 4a). 
However, we cannot at present exclude the case shown in Fig. 4b. The 
intersection stated in the theorem includes both cases as shown in Figs. 4a 
and 4b. 

Proof. Suppose that Wlu u and W~ ~ are tangent to each other at a 
point P, hence they are tangent to each other at the sequence of points 
{T2nP}(n = +1, _+2,...). Let us assume that W~." and W~ ~ do not intersect 
at any point, and derive a contradiction. 

Let P' on wlu d be a point obtained from P by the coordinate change 
X ~  -Jr -and Y ~  -Y .  Then, Wa, d and W~ r are tangent to each other at the 
sequence of points {T2nP'}(n= +1, ___2,...) due to the symmetry of the 
map (1') coming from the oddness off .  

We make several remarks: 

1. The map T is orientation preserving. (3) 

2. The natural orientations of stable and unstable manifolds coincide 
at their common points. This can be easily shown with the aid of the 
continuity of the map. Thus the tangency shown in Fig. 5a is impossible to 
occur. 
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3. The map has the symmetry mentioned above. The point  TP is on 
W ,  ~" and W~ r, and TP' is on Wlu d and W~'. The point  TP (resp. T P ' ) i s  
between P '  (resp. P)  and TZP ' (resp. TZP) on both  manifolds. Similarly, 
T3p (resp. T3p ') is between T2p ' (resp. T2p) and T4p ' (resp. T4p) on 
both manifolds. 

(a) 

(b) 

//  W 
S 

.-- W 
U 

L A W v " " -  I I  

Fig. 4. Possible heteroclinic intersections. The intersection point is indicated by a filled circle. 



750 Yamaguchi and Tanikawa 
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Possible heteroclinic tangencies. (a) The orientations of two manifolds at P are 
opposite. (b) The orientations of two manifolds at P are the same. 

4. The points {T2np}(n= _+1, _+2,..) are on Wlu u and Ws2( 

5. The stable manifold W i  t is mapped onto  W~" by T and vice versa. 

6. The arc OP (resp. OP') of W1, u (resp. W~u, is a Jordan  arc. The 
same is true with the arc PS 1 of W~ z and the arc P'S2 of W~ zr. 

We will show that WIn u and Ws zz intersect. By remark 2, we only have 
to consider the case of Fig. 5b. F rom remarks 1-6, the situation of 
tangency is illustrated in Fig. 6. Let us denote by F the Jordan  curve m'12) 
formed by the arc p T 2 p  of Wlu u a n d  the arc T2PP of W2( Let us introduce 
the orientation on F as that  of W~( The arrow a is on the right of F, 
whereas the arrow b is on the left. The points T3p ', T4p, and $1 are on the 
right of F. Thus the arc connecting the arrow b and T3P ' must  intersect F 
because the arrow b and the point  T3p ' are at the opposite sides of F. This 
arc (of W~u ") must  intersect the arc P T z P  of W 2l since two unstable 
manifolds cannot  have a c o m m o n  point. Thus a contradict ion is derived. 
This completes the proof. | 

Here we discuss the meaning of the theorem. Suppose that  there exist 
an unstable manifold W~ and a stable manifold W 2 and that  they are 
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Schematic illustrations of the unstable manifolds Wlu u and Wlu d and of the stable 
manifolds W~ / and we'. The origin is denoted by O, and the period-2 hyperbolic points are 
shown by S 1 and S 2. See Section 4. 

detached for a < ao and are heteroclinically intersecting for a > ao. What 
happens at a = ao? The usual belief is that the first direct heteroclinic 
tangency occurs. Our result is, contrary to the usual belief, that W~ and w e  
cannot be in the first direct heteroclinic tangency and they are in the first 
asymptotic heteroclinic tangency. We discuss the asymptotic tangency in 
detail. 

1 1 2 2 We define ~?Wlu and ~W~ as [ - W u ] - W  u and [ W s ] - W  s. To make 
clear these sets, we draw a schematic illustration in Fig. 7. The solid lines 
are the manifolds, for example, Wu and Ws. The dashed lines indicate ~W 1 
and 0W~. It is to be noted that W'u and W~ may accumulate to themselves. 
In our definition, OW~ and OW~ do not contain the manifolds themselves. 

Now the heteroclinic tangency between Wu and W~ is classified into 
four cases: 

1. W.  and W~ touch at some points. 
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f / I l l  \ul\ 0wu 

Fig. 7. Schematic illustration of Wu and W= (shown by solid curves) and ~?W, and aW, 
(shown by the dashed lines). 

2. 0Wu and W= touch at some points. 

3. Wu and ~W= touch at some points. 

4. ~?Wu and 0W= touch at some points. 

Our theorem excludes case 1 for the map of Eq. (1'). In the following, 
we discuss the second and fourth cases illustrated in Figs. 1 and 3. 

In Figs. 1 and 3, we observe the touching points of heteroclinic 
tangency, but do not find interesting points between the stable and 
unstable manifolds. Are the numerical results shown in these figures consis- 
tent with the theorem? The answer is that the asymptotic tangency occurs 
in these cases. The second case occurs in the piecewise linear map in Sec- 
tion 2, and the fourth case occurs in the cubic map in Section 3. What kind 
of heteroclinic tangency occurs depends on the structure of the invariant 
curves. In fact, in the cubic map, the homoclinic tangency between W2, and 
W~ occurs before the heteroclinic tangency, and the stable manifold W~ has 
a fractal structure after the homoclinic tangency. In this case, 0W1, and 
~W~ touch. On the other hand, in the piecewise linear map, the structure 
of W~ is not fractal. In this case, ~?Wlu and W~ touch. 

Over the critical value of a, there exist infinitely many heteroclinic 
intersections and the heteroclinic points are on the manifolds. 

5. C O N C L U D I N G  R E M A R K  

Finally we discuss the physical importance of the heteroclinic 
tangency. Newhouse ~ proved that there is much more complicated 
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dynamical behavior associated with a homoclinic tangency. We also expect 
that the complicated structure appears due to the heteroclinic tangency. 
After the heteroclinic tangency, the unstable manifold spreads beyond the 
stable manifold. For the case in Section 3, the heteroclinic tangency does 
not give rise to a serious effect on the orbit structure, because the stable 
attractors exist. If the chaotic attractor exists before the heteroclinic 
tangency occurs, we can expect the burst of the chaotic attractor. The 
heteroclinic tangency for the case in Section 3 gives rise to a change of the 
structure of basin boundaries. 

After the heteroclinic tangency, a certain portion of W~, is on the other 
side of the stable manifold W~ (the basin boundary separating two basins). 
Consider the preimage of such a portion by T n. As n tends to infinity, the 
preimage converges to the origin (0, 0). Before the heteroclinic tangency, 
the region close to the origin is the basin for confined attractors. After the 
tangency, there appear infinitely many areas in the vicinity of the origin 
which are the basin for the attractor at infinity. This implies that the basin 
for the attractor at infinity penetrates into the basin for the confined attrac- 
tor. The basin boundary W~ has already been turned into a fractal curve 
by the homoclinic tangency at a =  1.8863. This fractal basin boundary 
changes into a more complicated fractal boundary (fractal-fractal 
metamorphosis (4"5)) by the heteroclinic tangency. A change of the fractal 
dimension of the basin boundary due to the heteroclinic tangency is 
found.(14) 
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